
The role of top-down processing in
segmentation & recognition

Object recognition, given real images

• clutter, occlusion, noise

• role of cortical architecture 



Object recognition in real images

Background 
clutter and 
occlusion



Object recognition
given occlusion, clutter

Linking local information (features) likely to belong 
to the same object or pattern

• local ambiguity, noise

• need for generic priors, e.g. smoothness, 
contour and region-based grouping

Resolving competing explanations

• occlusion, clutter

• need for domain-specific priors



Simple influence graphs
Cue integration

Long line

short segments

Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve 
detection. IEEE Transactions on Pattern Analysis & Machine Intelligence 
11:823-839.

Yuille AL, Fang F, Schrater P, Kersten D (2004) Human and Ideal Observers for Detecting 
Image Curves. In: Advances in Neural Information Processing Systems 16 (Thrun S, Saul L, 
Schoelkopf B, eds). Cambridge, MA: MIT Press.



Cortical basis?



Short segments to long lines?
Within-area linkage?

1 to 2 mm

1 to 2 mm
~ 8 mm

Das A, Gilbert CD (1999) Topography of 
contextual modulations mediated by short-range 
interactions in primary visual cortex. Nature 
399:655-661.



But what about whole shapes?



Region-based grouping

From: Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect 
natural image boundaries using local brightness, color, and texture cues. IEEE 
Trans Pattern Anal Mach Intell, 26(5), 530-549.



Object recognition
given occlusion, clutter

Linking local information (features) likely to 
belong to the same object or pattern

• local ambiguity, noise

• need for generic priors, e.g. smoothness

Resolving competing explanations

• occlusion, clutter

• need for domain-specific priors



Competing explanations: 
Explaining away missing data

or or not

?



Auxiliary evidence for 
occlusion



Recognition despite cast shadows

Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends 
and tacit assumptions in vision research (Gorea A, ed), pp 295-304. Cambridge, UK: 
Cambridge University Press.



Suggests...

is a more complete picture than this



Doesn’t mean that bottom-up segmentation 
can’t work, but that achieving high-performance 
requires a combination of good bottom-up 
processing with top-down verification.

Neural evidence for top-down role in perceptual 
organization?



Computer vision
Image parsing: analysis by synthesis

(Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005))

models [38] [39]. In particular, the pattern types can be expanded to include material properties

which are not explicit objects.

The advantages of a generative model for the entire image include the ability to “explain away”.

Submodels corresponding to different objects, or processes, compete and cooperate to explain dif-

ferent parts of the image (e.g. the letter B plus bar competes with the interpretation of accidentally

aligned fragments in Figure 1B). A face model might hallucinate a face in the trunk of a tree; but a

tree model can overule this and provide the correct interpretation of the tree trunk, see Figure (5).

In addition, full generative models enforce consistency of the interpretation of the image.
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Figure 3: A. The image is generated (left panel) by a probabilistic context free grammar shown by

a two layer graph with nodes with properties (ζ, l, θ) corresponding to regions Li in the image. B.

The right panel shows samples from the face model and the letter model – i.e. from p(IR(L)|ζ, L,Θ).

We now switch to the task of performing inference on this generative model to estimate W ∗ =

arg maxW P (W |I). This requires a sophisticated inference algorithm that can perform operations

such as creating nodes, deleting nodes, diffusing the boundaries, and altering the node attributes.

The strategy used in [3] is to perform analysis by synthesis by a data-driven Markov Chain Monte

Carlo (DDMCMC) algorithm. This algorithm is guaranteed to converge by standard properties

of MCMC. Informally, low-level cues are used to make hypotheses about the scene which can be

verified or rejected by sampling from the models. For example, low-level cues [31, 32] can be used

to hypothesize that there is a face in a region of the image. This hypothesis can be validated

or rejected by sampling from a generative face model. The bottom-up cues propose that there

are faces in the tree bark, but this proposal is rejected by the top-down generative model, see

Figure (5). Inference is performed by applying a set of operators which change the structure of the

parse graph, see Figure (4). These operators are implemented by transition kernels K, see Box 1

for a more technical description of the algorithm. The bottom-up cues are based on discriminative

models which are described in Box 2.
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•Find most probable scene 
description

•Bottom-up 
“proposals” (cues) to 
access three types of 
models (text, faces, 
background/texture) models

•Verification through top-
down synthesis

• If bottom-up proposals are 
good, synthesis is not 
needed to find most 
probable scene

•Flexible graph



Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image

There is evidence that reliable diagnostic information for certain categories is available from very

simple image measurements [35, 32], and that humans make certain categorical decisions sufficiently

fast to preclude a verification loop [40](but see [41] and [42]).

“Where do the generative models come from?”

Ideally the generative models, the discriminative models, and the stochastic grammar would all

be learnt from natural images. This is not difficult in principle because, as discussed in Griffiths

and Yuille, learning the model from data is simply another example of statistical inference. The

Helmholtz machine [43] gives an illustration of how a generative model, and an inference algorithm,

can be learnt. This approach, however, has been applied only to simple visual stimuli. Similarly

Friston [16] suggests learning models using the Expectation-Maximization algorithm. Although

this is a useful metaphor, the challenge is to see whether this idea can be translated to algorithms

that can deal with the complexities of natural images.

Learning generative and discriminative models is an extremely difficult problem in practice

due to the large dimensionality of natural images. There has recently, however, been dramatic

progress on the similar, but arguably simpler, problem of learning a stochastic grammar for natural

languages (see article by Chater and Manning). At present, different components of the image

parsing model are learnt individually. For example, the discriminative models for text and faces

are trained using labelled examples of “face”, “text”, and “non-face”, “non-text”. Similarly the
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Image parsing & 
“Explaining 

away”

Tu, Z., Chen, X., Yuille, A., & Zhu, S. 
(2005). Image Parsing: Unifying 
Segmentation, Detection and 
Recognition. IJCV, 63(2).

Input

Bottom-up result
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Synthesized image
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by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image
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False alarm

Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image
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fast to preclude a verification loop [40](but see [41] and [42]).
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False alarm 
explained 

away



Whole shapes -> 
Lateral occipital 
complex (LOC)

Primary visual 
cortex (V1) -> 

Local, 
oriented, 

moving edges



Button presses



Perceptual organization correlates with 
reduced V1 activity

Button press V1 activity



Perceptual organization is correlated with 
increased LOC activity

From: Fang, Murray, He & Kersten, 2004, International Congress of Psychology, Beijing



Perceptual organization is correlated with 
decreased V1 activity



“Object” area Local “feature” area

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception 
reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99, 15164-15169.

Shape perception can 
reduce V1 activity

Explanation?

Many...

“Explaining 
away” through 
predictive 
coding

Sparse coding



Structure from motion



V1
LOC



Internal
generative

models

1. Feedforward: local features to objects

2. Feedback models

a. Feedforward + attention: 

competitive selection of features

b. Predictive coding

c. Sparsification

Cortical Mechanism?
...some speculation

MacKay DM (1956) The epistemological problem for automata. In: Automata 
Studies (Shannon CE, McCarthy J, eds), pp 235-250. Princeton: Princeton 
University Press.



Cortical  organization



Cortical  organization

• Organization of visual cortices is a hierarchy

• Depends on distinct feedforward/feedback 
pathways

• Different laminar specificity

• More backward connections

• Backward connections more diffuse



V1 => V2 =>V4 =>IT

V1 <= V2 <=V4 <=IT

Object recognition?



Forward connections

• Sparse axonal bifurcations

• Topographically organized

• Originate in supragranular layers (I,II,III)

• III => adjacent columns

• II => other cortical areas

• Terminate in layer IV

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.



Feedback connections

• Lots of axonal bifurcation

• Diffuse topography

• Originate in infragranular (V, VI) layers

• Mainly terminate in supragranular layers 
(I,II,III)

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.



Figure  courtesy of Ray Guillery



Internal generative models
Analysis-by-synthesis

 Predictive coding
• High-level object models project back 

predictions of the incoming data
Poor fit, high residual => high activity

Sparsification
• A good high-level fit tells earlier areas to 

“stop gossiping”
Amplify the activity for early features that 
belong to object, suppress the rest



Predictive (top-down)
processes in the brain?

Lower area
(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts 
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.



HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

Predictive coding

Lower area
(V1) Higher area



HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

Predictive coding

Lower area
(V1) Higher area



Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

HiLo

Predictive coding

Lower area
(V1) Higher area



Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

HiLo

Predictive coding

Lower area
(V1) Higher area



HiLo

Sparsification
“Stop gossiping”

Lower area
(V1)

Higher areas
(LOC)

Grossberg S (1994) 3-D vision and figure-ground separation by visual 
cortex. Percept Psychophys 55:48-121.



HiLo

Sparsification
“Stop gossiping”

Lower area
(V1)

Higher areas
(LOC)



HiLo

Sparsification
“Stop gossiping”
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Higher areas
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HiLo

Sparsification
“Stop gossiping”

Lower area
(V1)

Higher areas
(LOC)



HiLo

Sparsification
“Stop gossiping”

Lower area
(V1)

Higher areas
(LOC)



Lee & Mumford, 2003, JOSA

HiLo

Bayesian Interpretation
Sparsification

Lower area
(V1)

Higher areas
(LOC)

p(x0 | x1)p(x1 | x2) /Z1 1 2 2 3p(x | x )p(x | x ) /Z2

p(x1 | x2) p(x2 | x3)

x0 x1 x2

Particle filtering ideas: Isard M, Blake A (1998) Condensation -- conditional density propagation 
for visual tracking. International Journal of Computer Vision 29:5--28.



Summary

Common patterns of neocortex structure

• Has inspired lots of models of cortical 
information processing

Key target problem?

• Object perception given occlusion, clutter

fMRI and object grouping given occlusion

• consistent with feedback, but...


